Matrix Algebra: A Review

1 Basic Definitions and Axioms.

- Matrix:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left(a_{i j}\right)
$$

is an $m \times n$ matrix (m rows, n columns) with $a_{i j}$ as its element in the $i^{\text {th }}$ row and $j^{\text {th }}$ columns for $i=1, \ldots, m$ and $j=1, \ldots, n$.

- $c \cdot \boldsymbol{A}=\left(c \cdot a_{i j}\right)$, if c is a scalar.
- $\boldsymbol{A}+\boldsymbol{B}=\left(a_{i j}+b_{i j}\right)$ if $\boldsymbol{B}=\left(b_{i j}\right)$ is $m \times n$.
- $\boldsymbol{A} \boldsymbol{B}=\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)$ if \boldsymbol{B} has n rows.
- Associative law: $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(\boldsymbol{B C})=\boldsymbol{A B C}$.

But in general, matrices don't commute, i.e., $\boldsymbol{A} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{A}$ in general.

- Distributive law: $\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A B}+\boldsymbol{A C}$.
- $\boldsymbol{A}^{\prime}=\left(a_{j i}\right)$ is the transpose of \boldsymbol{A}.
$-\left(\boldsymbol{A}^{\prime}\right)^{\prime}=\boldsymbol{A}$.
- If $\boldsymbol{C}=(\boldsymbol{A}+\boldsymbol{B}), \boldsymbol{C}^{\prime}=(\boldsymbol{A}+\boldsymbol{B})^{\prime}=\boldsymbol{A}^{\prime}+\boldsymbol{B}^{\prime}$.
$-(\boldsymbol{A B})^{\prime}=\boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime},(\boldsymbol{A B C})^{\prime}=\boldsymbol{C}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{A}^{\prime}$.
$-I^{\prime}=\boldsymbol{I}$.
- If c is a scalar, $c^{\prime}=c$.
- If c is a scalar, $(c \boldsymbol{A})^{\prime}=c \boldsymbol{A}^{\prime}$.
- If \boldsymbol{A} is a $n \times n$ matrix and $\boldsymbol{A}=\boldsymbol{A}^{\prime}, \boldsymbol{A}$ is symmetric.

2 Sum of values.

- Denote by \boldsymbol{i} a vector that contains a columns of ones. Then,

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}=\boldsymbol{i}^{\prime} \boldsymbol{x}
$$

- If all elements in \boldsymbol{x} are equal to the same constant a, then $\boldsymbol{x}=a \boldsymbol{i}$ and

$$
\sum_{i=1}^{n} x_{i}=\boldsymbol{i}^{\prime}(a \boldsymbol{i})=a\left(\boldsymbol{i}^{\prime} \boldsymbol{i}\right)=n a
$$

- For any constant a and vector $\boldsymbol{x}, \sum_{i=1}^{n} a x_{i}=a \sum_{i=1}^{n} x_{i}=a \boldsymbol{i}^{\prime} \boldsymbol{x}$.
- If $a=\frac{1}{n}$, then we obtain the arithmetic mean, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{n} \boldsymbol{i}^{\prime} \boldsymbol{x}$, from which it follows that $\sum_{i=1}^{n} x_{i}=\boldsymbol{i}^{\prime} \boldsymbol{x}=n \bar{x}$.
- The sum of squares of the elements in vector \boldsymbol{x} is $\sum_{i=1}^{n} x_{i}^{2}=\boldsymbol{x}^{\prime} \boldsymbol{x}$; while the sum of the products of the n elements in vectors \boldsymbol{x} and \boldsymbol{y} is $\sum_{i=1}^{n} x_{i} y_{i}=\boldsymbol{x}^{\prime} \boldsymbol{y}$.
- If \boldsymbol{X} is $n \times k$, then

$$
\boldsymbol{X}^{\prime} \boldsymbol{X}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{\boldsymbol{i}}^{\prime}
$$

3 Geometry of Matrices.

- Let $\boldsymbol{a}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right) \in \mathbb{R}^{n} \Rightarrow$ coordinates of a point in \mathbb{R}^{n}.

Here, \mathbb{R}^{n} is an example of a vector space.

- V is a vector space iff $\forall \boldsymbol{x}, \boldsymbol{y} \in V$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in V$, i.e., it is closed under scalar multiplication and addition.
- Basis Vector: A set of vectors in a vector space is a basis for that vector space if any vector in the vector space can be written as a linear combination of that set of vectors.
- A set of vectors $\boldsymbol{v}_{\mathbf{1}}, \cdots, \boldsymbol{v}_{\boldsymbol{m}}$ in a vector space V is said to span V iff $\forall \boldsymbol{v} \in V$ there exists $\alpha_{1}, \cdots, \alpha_{m} \in \mathbb{R}$ such that $\boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} v_{i}$.
- $\operatorname{dim}(\mathrm{V})=$ dimension of $\mathrm{V}=$ the smallest number of vectors that span V .
- A set of vectors is linearly dependent iff any one of the vectors in the set can be expressed as a linear combination of the others.
- A set of vectors $\left\{\boldsymbol{v}_{\mathbf{1}}, \cdots, \boldsymbol{v}_{\boldsymbol{m}}\right\}$ is linearly independent iff the only solution to $\alpha_{1} \boldsymbol{v}_{\mathbf{1}}+$ $\cdots+\alpha_{m} \boldsymbol{v}_{\boldsymbol{m}}=0$ is $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=0$.
- Basis of a vector space V : A set of vectors that span V and that are linearly independent.
- If \boldsymbol{a} and \boldsymbol{b} are both $k \times 1$, then their inner product is

$$
\boldsymbol{a}^{\prime} \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}=\sum_{j=1}^{k} a_{j} b_{j}=\boldsymbol{b}^{\prime} \boldsymbol{a}
$$

- Definition. Norm of a vector \boldsymbol{a}. $\|\boldsymbol{a}\|=\sqrt{\boldsymbol{a}^{\prime} \boldsymbol{a}}=$ length of \boldsymbol{a}.
- Definition. Vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal iff $\boldsymbol{a}^{\prime} \boldsymbol{b}=\boldsymbol{b}^{\prime} \boldsymbol{a}=0$.
- Definition. Orthogonal basis of V: Basis of V that consists of vectors that are orthogonal to each other.
- Definition. Orthonormal basis of V: Orthogonal basis of V in which the length of the vectors equals one, i.e., $\left\{\boldsymbol{e}_{\mathbf{1}}, \cdots, \boldsymbol{e}_{\boldsymbol{m}}\right\}$ where $\left\|\boldsymbol{e}_{\boldsymbol{i}}\right\|=1 \forall i=1, \cdots, n$ and $\boldsymbol{e}_{\boldsymbol{i}}^{\prime} \boldsymbol{e}_{\boldsymbol{j}}=0 \forall i \neq$ j.

4 Trace.

- Definition. The trace of $k \times k$ square matrix \boldsymbol{A} is the sum of its diagonal elements

$$
\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{k} a_{i i}
$$

- Properties.
- Let \boldsymbol{A} and \boldsymbol{B} be square matrices and c be a scalar.

$$
\begin{aligned}
\operatorname{tr}(c \cdot \boldsymbol{A}) & =c \cdot \operatorname{tr}(\boldsymbol{A}) \\
\operatorname{tr}\left(\boldsymbol{A}^{\prime}\right) & =\operatorname{tr}(\boldsymbol{A}) \\
\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B}) & =\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B}) \\
\operatorname{tr}\left(\boldsymbol{I}_{\boldsymbol{k}}\right) & =k \\
\boldsymbol{a}^{\prime} \boldsymbol{a} & =\operatorname{tr}\left(\boldsymbol{a}^{\prime} \boldsymbol{a}\right)=\operatorname{tr}\left(\boldsymbol{a} \boldsymbol{a}^{\prime}\right) \\
\operatorname{tr}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right) & =\sum_{i=1}^{k} \boldsymbol{a}_{i}^{\prime} \boldsymbol{a}_{i}=\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j}^{2}
\end{aligned}
$$

- Let \boldsymbol{A} be $n \times k$ and B be $k \times n$.

Then, we have

$$
\operatorname{tr}(\boldsymbol{A} \boldsymbol{B})=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})
$$

5 Inverse.

- Definition. For a square $n \times n$ matrix \boldsymbol{A} having full rank, \boldsymbol{A}^{-1} is defined to be a matrix \boldsymbol{B} that satisfies

$$
A B=B A=I_{n}
$$

\Rightarrow exists only if \boldsymbol{A} is full rank or, equivalently, \boldsymbol{A} is nonsingular.
\Rightarrow If the inverse exists, then it must be unique.

- Properties.

(i) $(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1},(\boldsymbol{A B C})^{-1}=\boldsymbol{C}^{-1} \boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$
if $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} are nonsingular.
(ii) $\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A}$.
(iii) $\left(\boldsymbol{A}^{\prime}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\prime}$.
(iv) If \boldsymbol{A} is symmetric, then \boldsymbol{A}^{-1} is symmetric.

6 Rank of a Matrix.

- Definition.

$$
\begin{aligned}
\operatorname{rank}(\boldsymbol{A}) & =\operatorname{rank} \text { of } \boldsymbol{A} \\
& =\text { maximum number of linearly independent columns } \\
& =\text { maximum number of linearly independent rows }
\end{aligned}
$$

- Properties. Let \boldsymbol{A} be an $m \times n$ matrix.
(i) $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\prime}\right) \leq \min \{m, n\}$
(ii) \boldsymbol{A} is said to be full rank if $\operatorname{rank}(\boldsymbol{A})=\min (m, n)$, i.e., full rank matrix is a matrix whose rank is equal to the number of columns it contains.
(iii) $\operatorname{rank}(\boldsymbol{A B}) \leq \min \{\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B})\}$
(iv) $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)=\operatorname{rank}\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)$
(v) $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{P} \boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \boldsymbol{Q})=\operatorname{rank}(\boldsymbol{P} \boldsymbol{A} \boldsymbol{Q})$
provided $\boldsymbol{A}: m \times n, \boldsymbol{P}: m \times m, \boldsymbol{Q}: n \times n$ and $\operatorname{rank}(\boldsymbol{P})=m, \operatorname{rank}(\boldsymbol{Q})=n$.
- A square $k \times k$ matrix \boldsymbol{A} is said to be nonsingular if it has full rank, i.e., $\operatorname{rank}(\boldsymbol{A})=k$. \Leftrightarrow There is no $k \times 1$ scalar vector $\boldsymbol{c} \neq \mathbf{0}$ such that $\boldsymbol{A} \boldsymbol{c}=\mathbf{0}$.

7 Determinant.

- Let \boldsymbol{A} be an $n \times n$ square matrix. Then,

$$
\begin{aligned}
|\boldsymbol{A}| & =\text { determinant of } \boldsymbol{A} \\
& =\sum_{i=1}^{n} a_{i j}(-1)^{i+j} \boldsymbol{M}_{i j}
\end{aligned}
$$

where $\boldsymbol{M}_{i j}=$ determinant of a submatrix of \boldsymbol{A} with the $i^{t h}$ row and the $j^{t h}$ columns deleted.

- A shortcut for the determinant of 3×3 matrix.

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{32} a_{21}-a_{31} a_{22} a_{13}-a_{21} a_{12} a_{33}-a_{11} a_{23} a_{32}
$$

- Properties.

(i) $\left|\begin{array}{cccc}c_{1} & 0 & \cdots & 0 \\ 0 & c_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{n}\end{array}\right|=c_{1} \cdot c_{2} \cdots c_{n}=\prod_{i=1}^{n} c_{i}$.
(ii) $|\boldsymbol{A}|=\left|\boldsymbol{A}^{\prime}\right|$ even if \boldsymbol{A} is not symmetric.
(iii) $|c \cdot \boldsymbol{A}|=c^{n} \cdot|\boldsymbol{A}|$, where c is a scalar.
(iv) $|\boldsymbol{A}|=0$ if \boldsymbol{A} is not full rank. $\Leftrightarrow \boldsymbol{A}$ is singular.
(v) $|\boldsymbol{A} \boldsymbol{B}|=|\boldsymbol{A}| \cdot|\boldsymbol{B}|$.
(vi) If \boldsymbol{A} is invertible and $|\boldsymbol{A}| \neq 0,\left|\boldsymbol{A}^{-1}\right|=\frac{1}{|\boldsymbol{A}|}$.
(vii) If \boldsymbol{A} is triangular(upper or lower), then $|\boldsymbol{A}|=\prod_{i=1}^{n} a_{i i}$.

8 Eigenvalues and Eigenvectors.

- Consider

$$
\underset{n \times n}{\boldsymbol{A}} \underset{n \times 1}{\boldsymbol{x}}=\underset{1 \times 1}{\boldsymbol{\lambda}} \underset{n \times 1}{\boldsymbol{x}} .
$$

We have

$$
\begin{equation*}
\left(A-\lambda I_{n}\right) x=0 \tag{1}
\end{equation*}
$$

Note that the nontrivial solution(s) of $\boldsymbol{x}($ i.e., $x \neq 0)$ exists only if

$$
\begin{equation*}
\left|A-\lambda I_{n}\right|=0 \tag{2}
\end{equation*}
$$

Let $\boldsymbol{\lambda}^{*}$ denote $\boldsymbol{\lambda}$ that satisfies (2). Then, $\boldsymbol{\lambda}^{*}=$ eigenvalue of \boldsymbol{A}. Also, corresponding to $\boldsymbol{\lambda}^{*}$, the values of \boldsymbol{x}^{*} that satisfies $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{\lambda}^{*} \boldsymbol{x}^{*}$ is called the eigenvector of \boldsymbol{A}.

- Properties. Let \boldsymbol{A} be a real symmetric $n \times n$ matrix.
(i) Eigenvalues of \boldsymbol{A} are real.
(ii) Eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal.
(iii) Spectral Decomposition: \boldsymbol{A} can be diagonalized, i.e.,there exists an orthogonal matrix \boldsymbol{X} (i.e., $\boldsymbol{X}^{\prime} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{X}^{\prime}=\boldsymbol{I}_{\boldsymbol{n}}$ or equivalently, $\boldsymbol{X}^{\prime}=\boldsymbol{X}^{-1}$) and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ such that $\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{\Lambda}$.
(iv) $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
(v) $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$.

9 Positive Definite Matrix.

- Definition. Let \boldsymbol{A} be an $n \times n$ matrix.
- \boldsymbol{A} is positive definite(p.d.) if $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}>0 \quad \forall \boldsymbol{x} \neq 0$.
- \boldsymbol{A} is negative definite(n.d.) if $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}<0 \quad \forall \boldsymbol{x} \neq 0$.
- \boldsymbol{A} is positive semidefinite(p.s.d.) if $\boldsymbol{x}^{\boldsymbol{\prime}} \boldsymbol{A} \boldsymbol{x} \geq 0 \quad \forall \boldsymbol{x} \neq 0$.
- \boldsymbol{A} is negative semidefinite(n.s.d.) if $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x} \leq 0 \quad \forall \boldsymbol{x} \neq 0$.

- Properties.

(i) Let \boldsymbol{a} be an $n \times 1$ vector. Then, $\boldsymbol{A}=\boldsymbol{a} \boldsymbol{a}^{\prime}$ is always p.s.d.
(ii) If \boldsymbol{A} is p.s.d.(p.d.), then the eigenvalues of $\boldsymbol{A} \geq 0(\boldsymbol{A}>0)$
(iii) Let \boldsymbol{A} be a real, symmetric p.s.d. $n \times n$ matrix.

Then, there exists a matrix \boldsymbol{C} such that

$$
A=C^{\prime} C
$$

\boldsymbol{C} is not unique.
(iv) If \boldsymbol{A} is p.s.d., then $|\boldsymbol{A}| \geq 0$.
(v) If \boldsymbol{A} is p.d., so is \boldsymbol{A}^{-1}.
(vi) The identity matrix \boldsymbol{I} is p.d.
(vii) If \boldsymbol{A} is $n \times k$ with full column rank and $n>k$, then $\boldsymbol{A}^{\boldsymbol{\prime}} \boldsymbol{A}$ is p.d. and $\boldsymbol{A} \boldsymbol{A}^{\prime}$ is p.s.d.

10 Idempotent Matrix.

- Definition. A square $n \times n$ matrix \boldsymbol{A} is idempotent iff

$$
\boldsymbol{A} \cdot \boldsymbol{A}=\boldsymbol{A}
$$

- Properties.

(i) Eigenvalues of a symmetric idempotent matrix \boldsymbol{A} are 0 or 1.
(ii) Any symmetric idempotent matrix \boldsymbol{A} is p.s.d.
(iii) Let \boldsymbol{A} be symmetric and idempotent. Then, $\operatorname{rank}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A})$.
(iv) If \boldsymbol{A} is idempotent, then so is $\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{A}$.

11 Partitioned Matrix.

- Let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

- $A+B=\left[\begin{array}{ll}A_{11}+B_{11} & A_{12}+B_{12} \\ A_{21}+B_{21} & A_{22}+B_{22}\end{array}\right]$
$\bullet\left[\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right]^{\prime}\left[\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right]=\left[\begin{array}{cc}A_{11}^{\prime} A_{11} & 0 \\ 0 & A_{22}^{\prime} A_{22}\end{array}\right]$
- $\left|\begin{array}{cc}A_{11} & 0 \\ 0 & \boldsymbol{A}_{22}\end{array}\right|=\left|\boldsymbol{A}_{11}\right| \cdot\left|\boldsymbol{A}_{22}\right|$,
$\left|\begin{array}{ll}\boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22}\end{array}\right|=\left|\boldsymbol{A}_{22}\right| \cdot\left|\boldsymbol{A}_{11}-\boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21}\right|=\left|\boldsymbol{A}_{11}\right| \cdot\left|\boldsymbol{A}_{22}-\boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12}\right|$
- $\left|\begin{array}{cc}\boldsymbol{A}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{A}_{22}\end{array}\right|^{-1}=\left|\begin{array}{cc}\boldsymbol{A}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{A}_{\mathbf{2}}^{-1}\end{array}\right|$,

$$
\begin{aligned}
{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
C_{11} & -C_{11} A_{12} A_{22}^{-1} \\
-A_{22}^{-1} A_{21} C_{11} & A_{22}^{-1}+A_{22}^{-1} A_{21} C_{11} A_{12} A_{22}^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12} C_{22} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} C_{22} \\
-C_{22} A_{21} A_{11}^{-1} & \boldsymbol{C}_{22}
\end{array}\right]
\end{aligned}
$$

, where $\boldsymbol{C}_{\mathbf{1 1}}=\left(\boldsymbol{A}_{11}-\boldsymbol{A}_{\mathbf{1 2}} \boldsymbol{A}_{\mathbf{2 2}}^{-1} \boldsymbol{A}_{\mathbf{2 1}}\right)^{-1}, \boldsymbol{C}_{\mathbf{2 2}}=\left(\boldsymbol{A}_{\mathbf{2 2}}-\boldsymbol{A}_{\mathbf{2 1}} \boldsymbol{A}_{\mathbf{1 1}}^{-1} \boldsymbol{A}_{\mathbf{1 2}}\right)^{-1}$.

12 Kronecker Product.

- Let $\underset{l \times m}{\boldsymbol{A}}=\left(a_{i j}\right), \underset{n \times k}{\boldsymbol{B}}=\left(b_{i j}\right)$.

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{cccc}
a_{11} \boldsymbol{B} & a_{12} \boldsymbol{B} & \cdots & a_{1 m} \boldsymbol{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{l 1} \boldsymbol{B} & a_{l 2} \boldsymbol{B} & \cdots & a_{l m} \boldsymbol{B}
\end{array}\right]: \ln \times m k
$$

- $(\boldsymbol{A} \otimes \boldsymbol{B})^{-1}=\boldsymbol{A}^{-1} \otimes \boldsymbol{B}^{-1}$ if \boldsymbol{A} and \boldsymbol{B} are nonsingular.

$$
\begin{aligned}
& (\alpha \boldsymbol{A} \otimes \beta \boldsymbol{B})=\alpha \beta(\boldsymbol{A} \otimes \boldsymbol{B}) \\
& (\boldsymbol{A} \otimes \boldsymbol{B}) \otimes \boldsymbol{C}=\boldsymbol{A} \otimes(\boldsymbol{B} \otimes \boldsymbol{C}) \\
& (\boldsymbol{A}+\boldsymbol{B}) \otimes \boldsymbol{C}=(\boldsymbol{A} \otimes \boldsymbol{C})+(\boldsymbol{B} \otimes \boldsymbol{C})
\end{aligned}
$$

$$
(\boldsymbol{A} \otimes \boldsymbol{B})^{\prime}=\boldsymbol{A}^{\prime} \otimes \boldsymbol{B}^{\prime}
$$

$$
(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D})=\boldsymbol{A} \boldsymbol{C} \otimes \boldsymbol{B} \boldsymbol{D}
$$

$$
\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B})=\operatorname{tr}(\boldsymbol{A}) \cdot \operatorname{tr}(\boldsymbol{B})
$$

$|\boldsymbol{A} \otimes \boldsymbol{B}|=|\boldsymbol{A}|^{l} \cdot|\boldsymbol{B}|^{n}$ if $l=m$ and $n=k$.

13 Differentiation of Matrix.

- Let $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ and $y=f(x)=f\left(x_{1}, \cdots, x_{n}\right)$.

Define

$$
\begin{gathered}
\frac{\partial f(x)}{\partial \boldsymbol{x}}=\left(\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right): n \times 1, \\
\frac{\partial f(x)}{\partial \boldsymbol{x}^{\prime}}=\left(\begin{array}{lll}
\frac{\partial f(x)}{\partial x_{1}} & \cdots & \frac{\partial f(x)}{\partial x_{n}}
\end{array}\right): 1 \times n .
\end{gathered}
$$

- Let $g(x)=\left(\begin{array}{c}g_{1}(x) \\ \vdots \\ g_{m}(x)\end{array}\right)$.

Define

$$
\begin{gathered}
\frac{\partial g(x)}{\partial \boldsymbol{x}^{\prime}}=\left(\begin{array}{ccc}
\frac{\partial g_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial g_{m}(x)}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{m}(x)}{\partial x_{1}} & \cdots & \frac{\partial g_{m}(x)}{\partial x_{n}}
\end{array}\right): m \times n, \\
\frac{\partial g^{\prime}(x)}{\partial \boldsymbol{x}}=\left(\frac{\partial g(x)}{\partial \boldsymbol{x}^{\prime}}\right)^{\prime} .
\end{gathered}
$$

- Let $\boldsymbol{y}=\boldsymbol{a}^{\prime} \boldsymbol{x}=\boldsymbol{x}^{\prime} \boldsymbol{a}=\sum x_{i} a_{i}$, where $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), \boldsymbol{a}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$.

Then,

$$
\frac{\partial\left(\boldsymbol{a}^{\prime} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=\left(\begin{array}{c}
\frac{\partial\left(a^{\prime} x\right)}{\partial x_{1}} \\
\vdots \\
\frac{\partial\left(a^{\prime} x\right)}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\boldsymbol{a}
$$

$$
\begin{aligned}
& \boldsymbol{y}=\underset{m \times n}{\boldsymbol{A}} \underset{n \times 1}{\boldsymbol{x}} \Rightarrow\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{\prime} \\
\vdots \\
\boldsymbol{a}_{m}^{\prime}
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{a}_{\mathbf{1}}^{\prime} \boldsymbol{x} \\
\vdots \\
\boldsymbol{a}_{\boldsymbol{m}}^{\prime} \boldsymbol{x}
\end{array}\right] \\
& \Rightarrow y_{i}=\boldsymbol{a}_{\boldsymbol{i}}^{\prime} \boldsymbol{x} \text { for } i=1, \cdots, m \\
& \Rightarrow \frac{\partial y_{i}}{\partial \boldsymbol{x}^{\prime}}=\boldsymbol{a}_{\boldsymbol{i}}^{\prime} \\
& \therefore \frac{\partial(\boldsymbol{A} \boldsymbol{x})}{\partial \boldsymbol{x}^{\prime}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x^{\prime}} \\
\vdots \\
\frac{\partial y_{m}}{\partial x^{\prime}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{a}_{\mathbf{1}}^{\prime} \\
\vdots \\
\boldsymbol{a}_{m}^{\prime}
\end{array}\right]=\boldsymbol{A} .
\end{aligned}
$$

Similarly,

$$
\frac{\partial\left(\boldsymbol{x}^{\prime} \boldsymbol{A}^{\prime}\right)}{\partial \boldsymbol{x}}=\boldsymbol{A}^{\prime}
$$

$$
\begin{aligned}
\underset{1 \times n}{\boldsymbol{x}^{\prime}} \underset{n \times n}{\boldsymbol{A}} \underset{n \times 1}{\boldsymbol{y}} & =\sum_{i} \sum_{j} x_{i} y_{j} a_{i j} \\
\frac{\partial\left(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{y}\right)}{\partial \boldsymbol{x}} & =\boldsymbol{A} \boldsymbol{y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial\left(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\right)}{\partial \boldsymbol{x}} & =\left(\boldsymbol{A}+\boldsymbol{A}^{\prime}\right) \boldsymbol{x} \\
& =2 \boldsymbol{A} \boldsymbol{x} \text { if } \boldsymbol{A} \text { is symmetric }
\end{aligned}
$$

$$
\frac{\partial\left(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\right)}{\partial \boldsymbol{A}}=\boldsymbol{x} \boldsymbol{x}^{\prime} \text { since } \frac{\partial\left(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\right)}{\partial a_{i j}}=x_{i} x_{j}
$$

