Matrix Algebra: A Review

1 Basic Definitions and Axioms.

• Matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = (a_{ij})$$

is an $m \times n$ matrix(*m* rows, *n* columns) with a_{ij} as its element in the *i*th row and *j*th columns for i = 1, ..., m and j = 1, ..., n.

- $c \cdot \mathbf{A} = (c \cdot a_{ij})$, if c is a scalar.
- $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})$ if $\mathbf{B} = (b_{ij})$ is $m \times n$.
- $AB = (\sum_{k=1}^{n} a_{ik} b_{kj})$ if B has n rows.
- Associative law: (AB)C = A(BC) = ABC. But in general, matrices don't commute, i.e., $AB \neq BA$ in general.
- Distributive law: A(B+C) = AB + AC.
- $A' = (a_{ji})$ is the transpose of A.

$$- (A')' = A.$$

- If $C = (A + B), C' = (A + B)' = A' + B'.$
- $(AB)' = B'A', (ABC)' = C'B'A'.$
- $I' = I.$

- If c is a scalar, c' = c.
- If c is a scalar, $(c\mathbf{A})' = c\mathbf{A}'$.
- If \mathbf{A} is a $n \times n$ matrix and $\mathbf{A} = \mathbf{A}'$, \mathbf{A} is symmetric.

2 Sum of values.

• Denote by *i* a vector that contains a columns of ones. Then,

$$\sum_{i=1}^n x_i = x_1 + x_2 + \dots + x_n = \mathbf{i'x}$$

• If all elements in \boldsymbol{x} are equal to the same constant a, then $\boldsymbol{x} = a\boldsymbol{i}$ and

$$\sum_{i=1}^{n} x_i = \mathbf{i}'(a\mathbf{i}) = a(\mathbf{i}'\mathbf{i}) = na.$$

- For any constant a and vector \boldsymbol{x} , $\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i = a\boldsymbol{i'}\boldsymbol{x}$.
- If $a = \frac{1}{n}$, then we obtain the arithmetic mean, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \mathbf{i'} \mathbf{x}$, from which it follows that $\sum_{i=1}^{n} x_i = \mathbf{i'} \mathbf{x} = n\bar{x}$.
- The sum of squares of the elements in vector \boldsymbol{x} is $\sum_{i=1}^{n} x_i^2 = \boldsymbol{x'} \boldsymbol{x}$; while the sum of the products of the *n* elements in vectors \boldsymbol{x} and \boldsymbol{y} is $\sum_{i=1}^{n} x_i y_i = \boldsymbol{x'} \boldsymbol{y}$.
- If \boldsymbol{X} is $n \times k$, then

$$oldsymbol{X'}oldsymbol{X} = \sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i'.$$

3 Geometry of Matrices.

• Let $\boldsymbol{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n \Rightarrow \text{coordinates of a point in } \mathbb{R}^n.$

Here, \mathbb{R}^n is an example of a vector space.

- V is a vector space iff $\forall x, y \in V$ and $\alpha, \beta \in \mathbb{R}$, we have $\alpha x + \beta y \in V$, i.e., it is closed under scalar multiplication and addition.
- *Basis Vector*: A set of vectors in a vector space is a *basis* for that vector space if any vector in the vector space can be written as a linear combination of that set of vectors.
- A set of vectors $\boldsymbol{v_1}, \dots, \boldsymbol{v_m}$ in a vector space V is said to span V iff $\forall \boldsymbol{v} \in V$ there exists $\alpha_1, \dots, \alpha_m \in \mathbb{R}$ such that $\boldsymbol{v} = \sum_{i=1}^n \alpha_i v_i$.
- $\dim(V) = \text{dimension of } V = \text{the smallest number of vectors that span } V.$
- A set of vectors is *linearly dependent* iff any one of the vectors in the set can be expressed as a linear combination of the others.
- A set of vectors $\{\boldsymbol{v_1}, \cdots, \boldsymbol{v_m}\}$ is *linearly independent* iff the only solution to $\alpha_1 \boldsymbol{v_1} + \cdots + \alpha_m \boldsymbol{v_m} = 0$ is $\alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$.
- *Basis* of a vector space V: A set of vectors that span V and that are linearly independent.
- If \boldsymbol{a} and \boldsymbol{b} are both $k \times 1$, then their *inner product* is

$$\boldsymbol{a'b} = a_1b_1 + a_2b_2 + \dots + a_kb_k = \sum_{j=1}^k a_jb_j = \boldsymbol{b'a}.$$

- Definition. Norm of a vector \boldsymbol{a} . $\parallel \boldsymbol{a} \parallel = \sqrt{\boldsymbol{a'a}} = \text{length of } \boldsymbol{a}$.
- Definition. Vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal iff $\boldsymbol{a'b} = \boldsymbol{b'a} = 0$.
- **Definition.** *Orthogonal basis* of V: Basis of V that consists of vectors that are orthogonal to each other.
- Definition. Orthonormal basis of V: Orthogonal basis of V in which the length of the vectors equals one, i.e., {e₁, · · · , e_m} where || e_i ||= 1 ∀i = 1, · · · , n and e'_ie_j = 0 ∀i ≠ j.

4 Trace.

• **Definition.** The *trace* of $k \times k$ square matrix \boldsymbol{A} is the sum of its diagonal elements

$$tr(\boldsymbol{A}) = \sum_{i=1}^{k} a_{ii}.$$

• Properties.

– Let \boldsymbol{A} and \boldsymbol{B} be square matrices and c be a scalar.

$$tr(c \cdot A) = c \cdot tr(A)$$
$$tr(A') = tr(A)$$
$$tr(A + B) = tr(A) + tr(B)$$
$$tr(I_k) = k$$
$$a'a = tr(a'a) = tr(aa')$$
$$tr(A'A) = \sum_{i=1}^{k} a'_i a_i = \sum_{i=1}^{k} \sum_{j=1}^{k} a^2_{ij}.$$

- Let \boldsymbol{A} be $n \times k$ and B be $k \times n$. Then, we have

$$tr(\boldsymbol{AB}) = tr(\boldsymbol{BA}).$$

5 Inverse.

• Definition. For a square $n \times n$ matrix A having full rank, A^{-1} is defined to be a matrix B that satisfies

$$AB = BA = I_n$$

- \Rightarrow exists only if **A** is full rank or, equivalently, **A** is nonsingular.
- \Rightarrow If the inverse exists, then it must be unique.

• Properties.

(i) $(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$, $(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C})^{-1} = \boldsymbol{C}^{-1}\boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$ if \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} are nonsingular.

(ii) $(A^{-1})^{-1} = A$.

- (iii) $(A')^{-1} = (A^{-1})'.$
- (iv) If A is symmetric, then A^{-1} is symmetric.

6 Rank of a Matrix.

• Definition.

 $rank(\mathbf{A}) = rank \text{ of } \mathbf{A}$

- = maximum number of linearly independent columns
- = maximum number of linearly independent rows
- **Properties.** Let \boldsymbol{A} be an $m \times n$ matrix.

(i) $rank(\mathbf{A}) = rank(\mathbf{A'}) \le min\{m, n\}$

(ii) \mathbf{A} is said to be *full rank* if $rank(\mathbf{A}) = min(m, n)$, i.e., *full rank* matrix is a matrix whose rank is equal to the number of columns it contains.

(iii) $rank(\boldsymbol{AB}) \leq min\{rank(\boldsymbol{A}), rank(\boldsymbol{B})\}$

(iv) $rank(\mathbf{A}) = rank(\mathbf{A'A}) = rank(\mathbf{AA'})$

(v) $rank(\mathbf{A}) = rank(\mathbf{P}\mathbf{A}) = rank(\mathbf{A}\mathbf{Q}) = rank(\mathbf{P}\mathbf{A}\mathbf{Q})$ provided \mathbf{A} : $m \times n$, $\mathbf{P} : m \times m$, $\mathbf{Q} : n \times n$ and $rank(\mathbf{P}) = m$, $rank(\mathbf{Q}) = n$.

• A square $k \times k$ matrix A is said to be *nonsingular* if it has full rank, i.e., rank(A) = k. \Leftrightarrow There is no $k \times 1$ scalar vector $c \neq 0$ such that Ac = 0.

7 Determinant.

• Let \boldsymbol{A} be an $n \times n$ square matrix. Then,

$$|\mathbf{A}| = \text{determinant of } \mathbf{A}$$

= $\sum_{i=1}^{n} a_{ij} (-1)^{i+j} \mathbf{M}_{ij}$

where M_{ij} = determinant of a submatrix of A with the i^{th} row and the j^{th} columns deleted.

• A shortcut for the determinant of 3×3 matrix.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{32}a_{21} - a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33} - a_{11}a_{23}a_{32}.$$

• Properties.

(i)
$$\begin{vmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_n \end{vmatrix} = c_1 \cdot c_2 \cdots c_n = \prod_{i=1}^n c_i.$$

- (ii) $|\mathbf{A}| = |\mathbf{A'}|$ even if \mathbf{A} is not symmetric.
- (iii) $|c \cdot \mathbf{A}| = c^n \cdot |\mathbf{A}|$, where c is a scalar.
- (iv) $|\mathbf{A}| = 0$ if \mathbf{A} is not full rank. $\Leftrightarrow \mathbf{A}$ is singular.
- (v) $|\boldsymbol{A}\boldsymbol{B}| = |\boldsymbol{A}| \cdot |\boldsymbol{B}|.$
- (vi) If \boldsymbol{A} is invertible and $|\boldsymbol{A}| \neq 0$, $|\boldsymbol{A}^{-1}| = \frac{1}{|\boldsymbol{A}|}$.
- (vii) If \boldsymbol{A} is triangular (upper or lower), then $|\boldsymbol{A}| = \prod_{i=1}^{n} a_{ii}$.

8 Eigenvalues and Eigenvectors.

• Consider

$$oldsymbol{A}_{n imes n} oldsymbol{x}_{n imes 1} = oldsymbol{\lambda}_{1 imes 1} oldsymbol{x}_{n imes 1}.$$

We have

$$(\boldsymbol{A} - \boldsymbol{\lambda} \boldsymbol{I_n})\boldsymbol{x} = \boldsymbol{0}.$$
 (1)

Note that the nontrivial solution(s) of \boldsymbol{x} (i.e., $x \neq 0$) exists only if

$$|\boldsymbol{A} - \boldsymbol{\lambda} \boldsymbol{I}_{\boldsymbol{n}}| = 0. \tag{2}$$

Let λ^* denote λ that satisfies (2). Then, $\lambda^* =$ eigenvalue of A. Also, corresponding to λ^* , the values of x^* that satisfies $Ax^* = \lambda^*x^*$ is called the *eigenvector* of A.

- Properties. Let A be a real symmetric $n \times n$ matrix.
 - (i) Eigenvalues of \boldsymbol{A} are real.

(ii) Eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal.

(iii) Spectral Decomposition: \mathbf{A} can be diagonalized, i.e., there exists an orthogonal matrix \mathbf{X} (i.e., $\mathbf{X'X} = \mathbf{XX'} = \mathbf{I_n}$ or equivalently, $\mathbf{X'} = \mathbf{X}^{-1}$) and a diagonal matrix $\mathbf{\Lambda} = diag(\lambda_1, \dots, \lambda_n)$ such that $\mathbf{X'AX} = \mathbf{\Lambda}$.

(iv)
$$|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$$
.

(v) $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$.

9 Positive Definite Matrix.

- **Definition.** Let A be an $n \times n$ matrix.
 - **A** is positive definite(p.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \neq 0$.
 - **A** is negative definite(n.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0 \quad \forall \mathbf{x} \neq 0$.
 - A is positive semidefinite(p.s.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0 \quad \forall \mathbf{x} \neq 0$.
 - **A** is negative semidefinite(n.s.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} \leq 0 \quad \forall \mathbf{x} \neq 0$.

• Properties.

(i) Let \boldsymbol{a} be an $n \times 1$ vector. Then, $\boldsymbol{A} = \boldsymbol{a}\boldsymbol{a'}$ is always p.s.d.

(ii) If \boldsymbol{A} is p.s.d.(p.d.), then the eigenvalues of $\boldsymbol{A} \ge 0(\boldsymbol{A} > 0)$

(iii) Let A be a real, symmetric p.s.d. $n \times n$ matrix. Then, there exists a matrix C such that

$$A = C'C$$
,

C is not unique.

- (iv) If \boldsymbol{A} is p.s.d., then $|\boldsymbol{A}| \ge 0$.
- (v) If \boldsymbol{A} is p.d., so is \boldsymbol{A}^{-1} .
- (vi) The identity matrix \boldsymbol{I} is p.d.

(vii) If \mathbf{A} is $n \times k$ with full column rank and n > k, then $\mathbf{A'A}$ is p.d. and $\mathbf{AA'}$ is p.s.d.

10 Idempotent Matrix.

• **Definition.** A square $n \times n$ matrix \boldsymbol{A} is *idempotent* iff

 $A \cdot A = A$

• Properties.

- (i) Eigenvalues of a symmetric idempotent matrix \boldsymbol{A} are 0 or 1.
- (ii) Any symmetric idempotent matrix \boldsymbol{A} is p.s.d.
- (iii) Let \boldsymbol{A} be symmetric and idempotent. Then, $rank(\boldsymbol{A}) = tr(\boldsymbol{A})$.
- (iv) If \boldsymbol{A} is idempotent, then so is $\boldsymbol{I_n} \boldsymbol{A}$.

11 Partitioned Matrix.

• Let

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}.$$

$$\begin{aligned} \bullet \ A + B \ &= \ \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{bmatrix} \\ \bullet \ \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}' \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} &= \begin{bmatrix} A'_{11}A_{11} & 0 \\ 0 & A'_{22}A_{22} \end{bmatrix} \\ \bullet \ \begin{vmatrix} A_{11} & 0 \\ 0 & A_{22} \end{vmatrix} = \begin{vmatrix} A_{11} \end{vmatrix} \cdot \begin{vmatrix} A_{22} \end{vmatrix}, \\ \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = \begin{vmatrix} A_{22} \end{vmatrix} \cdot \begin{vmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} \end{vmatrix} = \begin{vmatrix} A_{11} \end{vmatrix} \cdot \begin{vmatrix} A_{22} - A_{21}A_{11}^{-1}A_{12} \end{vmatrix} \\ \bullet \ \begin{vmatrix} A_{11} & 0 \\ 0 & A_{22} \end{vmatrix}^{-1} = \begin{vmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22} \end{vmatrix}, \\ \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix}^{-1} = \begin{vmatrix} C_{11} & -C_{11}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}C_{11} & A_{22}^{-1} + A_{22}^{-1}A_{21}C_{11}A_{12}A_{22}^{-1} \\ &= \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}C_{22}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}C_{22} \\ -C_{22}A_{21}A_{11}^{-1} & C_{22} \end{bmatrix} \\ &= \begin{bmatrix} A_{11}^{-1} + A_{11}^{-1}A_{12}C_{22}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}C_{22} \\ -C_{22}A_{21}A_{11}^{-1} & C_{22} \end{bmatrix} \\ &, \text{ where } C_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}, C_{22} = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}. \end{aligned}$$

12 Kronecker Product.

• Let
$$\mathbf{A}_{l \times m} = (a_{ij}), \quad \mathbf{B}_{n \times k} = (b_{ij}).$$

$$\boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} a_{11}\boldsymbol{B} & a_{12}\boldsymbol{B} & \cdots & a_{1m}\boldsymbol{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1}\boldsymbol{B} & a_{l2}\boldsymbol{B} & \cdots & a_{lm}\boldsymbol{B} \end{bmatrix} : ln \times mk$$

• $(\boldsymbol{A}\otimes\boldsymbol{B})^{-1} = \boldsymbol{A}^{-1}\otimes\boldsymbol{B}^{-1}$ if \boldsymbol{A} and \boldsymbol{B} are nonsingular.

$$(\alpha \boldsymbol{A} \otimes \beta \boldsymbol{B}) = \alpha \beta (\boldsymbol{A} \otimes \boldsymbol{B})$$

$$(\boldsymbol{A}\otimes\boldsymbol{B})\otimes\boldsymbol{C}=\boldsymbol{A}\otimes(\boldsymbol{B}\otimes\boldsymbol{C})$$

- $(\boldsymbol{A} + \boldsymbol{B}) \otimes \boldsymbol{C} = (\boldsymbol{A} \otimes \boldsymbol{C}) + (\boldsymbol{B} \otimes \boldsymbol{C})$
- $(\boldsymbol{A}\otimes \boldsymbol{B})' = \boldsymbol{A}'\otimes \boldsymbol{B}'$
- $(\boldsymbol{A}\otimes \boldsymbol{B})(\boldsymbol{C}\otimes \boldsymbol{D})=\boldsymbol{A}\boldsymbol{C}\otimes \boldsymbol{B}\boldsymbol{D}$

$$tr(\boldsymbol{A} \otimes \boldsymbol{B}) = tr(\boldsymbol{A}) \cdot tr(\boldsymbol{B})$$

 $|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^l \cdot |\mathbf{B}|^n$ if l = m and n = k.

Differentiation of Matrix. 13

• Let
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $y = f(x) = f(x_1, \cdots, x_n)$.

Define

$$\frac{\partial f(x)}{\partial \boldsymbol{x}} = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix} : n \times 1,$$
$$\frac{\partial f(x)}{\partial \boldsymbol{x}'} = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{pmatrix} : 1 \times n.$$

• Let
$$g(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_m(x) \end{pmatrix}$$
.

Define

$$\frac{\partial g(x)}{\partial \boldsymbol{x'}} = \begin{pmatrix} \frac{\partial g_1(x)}{\partial x_1} & \cdots & \frac{\partial g_m(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m(x)}{\partial x_1} & \cdots & \frac{\partial g_m(x)}{\partial x_n} \end{pmatrix} \quad : \ m \times n,$$

$$\frac{\partial g'(x)}{\partial \boldsymbol{x}} = \left(\frac{\partial g(x)}{\partial \boldsymbol{x'}}\right)'.$$

• Let
$$\boldsymbol{y} = \boldsymbol{a}'\boldsymbol{x} = \boldsymbol{x}'\boldsymbol{a} = \sum x_i a_i$$
, where $\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $\boldsymbol{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.
Then

Then,

$$\frac{\partial(\boldsymbol{a'x})}{\partial \boldsymbol{x}} = \begin{pmatrix} \frac{\partial(a'x)}{\partial x_1} \\ \vdots \\ \frac{\partial(a'x)}{\partial x_n} \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \boldsymbol{a}.$$

•

$$\boldsymbol{y} = \underset{m \times n}{\boldsymbol{A}} \underset{n \times 1}{\boldsymbol{x}} \Rightarrow \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \boldsymbol{a'_1} \\ \vdots \\ \boldsymbol{a'_m} \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{a'_1} \\ \vdots \\ \boldsymbol{a'_m} \boldsymbol{x} \end{bmatrix}$$
$$\Rightarrow y_i = \boldsymbol{a'_i} \boldsymbol{x} \text{ for } i = 1, \cdots, m$$
$$\Rightarrow \frac{\partial y_i}{\partial \boldsymbol{x'}} = \boldsymbol{a'_i}$$

$$\therefore \frac{\partial(\boldsymbol{A}\boldsymbol{x})}{\partial \boldsymbol{x'}} = \begin{bmatrix} \frac{\partial y_1}{\partial x'} \\ \vdots \\ \frac{\partial y_m}{\partial x'} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a'_1} \\ \vdots \\ \boldsymbol{a'_m} \end{bmatrix} = \boldsymbol{A}.$$

Similarly,

•

$$\frac{\partial(\boldsymbol{x}'\boldsymbol{A'})}{\partial\boldsymbol{x}} = \boldsymbol{A'}.$$

$$egin{aligned} egin{aligned} egi$$

$$\frac{\partial (\boldsymbol{x}' \boldsymbol{A} \boldsymbol{x})}{\partial \boldsymbol{x}} = (\boldsymbol{A} + \boldsymbol{A}') \boldsymbol{x}$$
$$= 2\boldsymbol{A} \boldsymbol{x} \text{ if } \boldsymbol{A} \text{ is symmetric}$$

$$\frac{\partial(\boldsymbol{x'Ax})}{\partial \boldsymbol{A}} = \boldsymbol{xx'} \text{ since } \frac{\partial(\boldsymbol{x'Ax})}{\partial a_{ij}} = x_i x_j$$