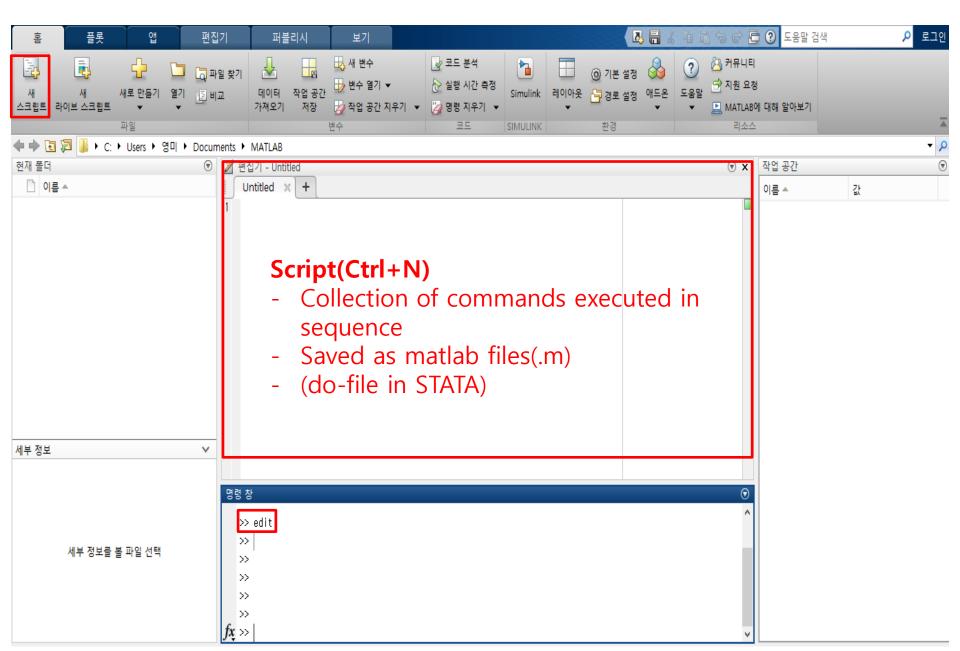
MATLAB Session I

171024 TA Session 4 Yeongmi Jeong

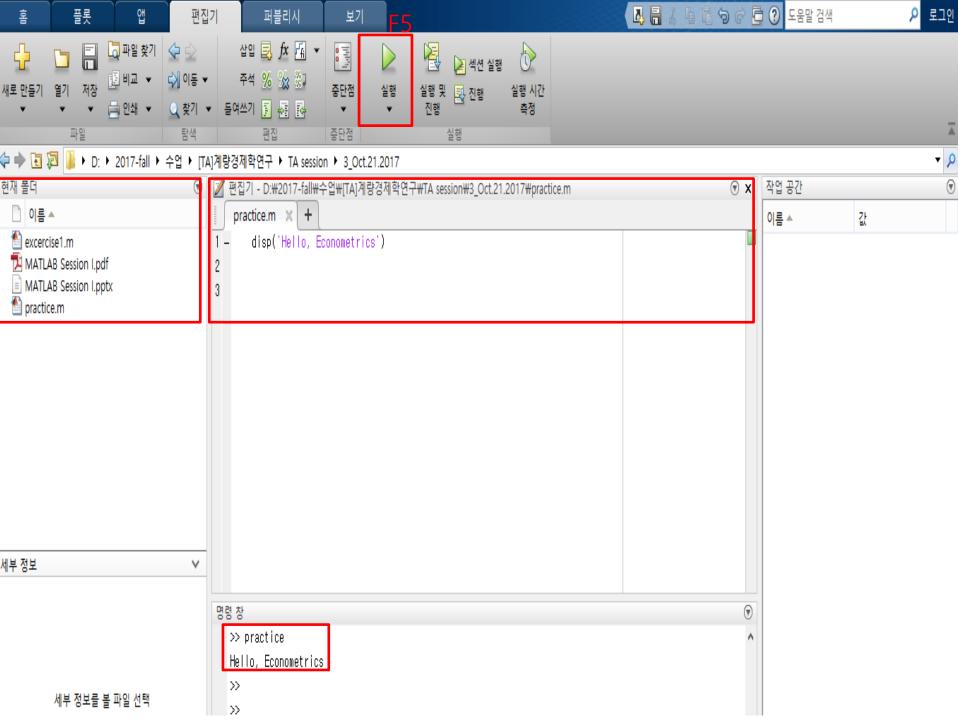

Contents

- 1. Introduction
- 2. Generating/ Manipulating Variables
- 3. Statistics
- 4. Flow Control
- 5. Plot

Layout

홈 플롯 앱		도움말검색 / 로그인
다. 다	고 데이터 작업공간 ♥️변수별기 ▼ 🔗 실행시간 측성 Simulink 레이아웃 📮 경로 설정 애드온 도움말 💆 시원 요정	∥ 대해 알아보기
 ↓ → 🔁 🔁 📔 → C: → Users → 염미 → Docum		▼ P
현재 폴더 💿	명령 창	작업 공간 (♥) 이름 ▲ 값
Current Directory	Command window You can enter commands. The output is printed here. 	Workspace - Current variables with type and dimension
세부 정보를 볼 파일 선택		

Layout


Execution/ Stop

- Execution
- (Command window) Enter commands to the command window
- (Script) Click the execution button to execute all command in a script
- (Script) F5 to execute all commands in a script

• Stop

- Let the cursor be on the command window. Try Ctrl+c.

• **Display characters** on the command window: disp('statement')

Help command

Help keyword

Displays the help text for the functionality specified by keyword on the command window.

Doc keyword \bullet

Displays documentation for the functionality specified by keyword.

명령 창	Documentation			최신 문서 검색	
>> help regression	I 목차 (닫기			
	< Documentation Home		regression		
regression - Linear regression	< Neural Network Toolbox	0	Linear regression		
	< Function Approximation and Clustering		Syntax		
This MATLAB function takes these arguments, Target matrix or cell array data	< Function Approximation and Nonlinear Regression		<pre>[r,m,b] = regression(t,y) [r,m,b] = regression(t,y,'one')</pre>		
with a total of N matrix rows Output matrix or cell array data of the same size	< Neural Network Toolbox		Description		
	 Function Approximation and Clustering 		[r,m,b] = regression(t,y) takes these arguments,		
	< Pattern Recognition		t	Target matrix or cell array data with a total of N matrix rows	
[r,m,b] = regression(t,y)	< Neural Network Toolbox		У	Output matrix or cell array data of the same size	
	< Functions		and returns these outputs,		
[r,m,b] = regression(t,y,'one')	regression		r	Regression values for each of the N matrix rows	
	ON THIS PAGE		m	Slope of regression fit for each of the N matrix rows	
	Description		b	Offset of regression fit for each of the N matrix rows	
참고 항목 <u>confusion</u> , <u>plotregression</u>	Examples See Also		<pre>[r,m,b] = regression(t,y,'one') combines all matrix ro</pre>	ws before regressing, and returns single scalar regression, slope, and offset values.	
			Examples		
regression에 대한 함수 도움말 문서 페이지			Fit Regression Model and Plot Fitted Values versus Targets		
			Train a feedforward network, then calculate and plot the regression between its targets and outputs.		
fx »			<pre>[x,t] = simplefit_dataset; net = feedforwardnet(20); net = train(net,x,t); w = net(w);</pre>		

y = net(x);

Contents

- 1. Introduction
- 2. Generating/ Manipulating Variables
- 3. Statistics
- 4. Flow Control
- 5. Plot

Variables

- Types
- 64 bit **double**: a=2
- 16 bit character: a='Hello, Econometrics'
- 1 bit logical, true(1) or false(0): a=(1>0)

Declaration

- '=' is the sign for assignment, does not mean 'equal'
- No need to initialize variable types
- To suppress output, end the line with a semicolon

Names

- Case sensitive(Var1, var1).
- First character must be a letter.
- Do not use built-in variables
 i: imaginary number
 pi:3.1415...
 ans: the last assigned value
 inf, -inf: positive and negative infinity
 NaN: not a number

```
명령 창
   >> a=2;
   >> a='Hello, Econometrics'
   a =
        'Hello, Econometrics'
   >> a=(1>0)
   a =
     logical
      1
   >> a=(1<0)
   a =
     logical
      0
작업 공간
                  값
이름 🔺
H a
                  0.0000 + 1.0000i
t b
                  3.1416
                  Inf
                  NaN
t d
+ var1
Var1
                  2
```

Vectors/ Matrix

Row vectors

: comma or space separated values between bracker a=[1 2 3 4], b=[1,2,3,4]

Column vectors

: semicolon separated values between bracket c=[1;2;3;4]

• Matrices

: A=[1 2; 3 4] or a=[1 2] b=[3 4] and A=[a; b] or a=[1; 3] b=[2; 4] and A=[a, b]

Diagonal matrices

: A=diag([1 2 3])

	명령	렴 창			
		>> a=[1234]		
		a =			
		1	2	3	4
t		>> b=[1;2;3;	; 4]	
		Ь =			
		1			
		2			
		3 4			
		>> a:	=[1 2]		
		a =			
			1	2	
		>> b:	=[3 4]		
		ь =			
			з	4	
		>> A:	=[a;b]		
		A =			
			1	2	
			3	4	

>> A=diag([1 2 3])

03

A =

Vectors/ Matrix

- i th element of a vector: **a(i)**
- (i, j) th element of a matrix: A(i,j)
- i th row of a matrix: A(i,:)
- j th row of a matrix: A(:,j)
- i, i+1, ..., j rows of a matrix: A(i:j, :)
- i, i+1, ..., j columns of a matrix: A(:, i:j)

명	령 칭						
	>>	A=[1	2	3;	4	5	6]
	A =	=					
		1		2			3
		4		5			6
	>>	A(2,3	2)				
	ans	3 =					
		5					
	>>	A(2,	:)				
	ans	3 =					
		4		5			6
	>>	A(1,	2:	:3)			
	ans	3 =					
<u>fx</u>		2		3			

Vectors/ Matrix

- Combining matrices(: dimension must be matched) r_combined=[A; B] or c_combined=[A B]
- Edit matrix components
 A(i,j)=value;
 A(i,:)=vector;
 A(:,j)=vector;
- Eliminating components
 A(i,:)=[];
 A(:,j)=[];

명	령 창							
	>> A:	=[1 2	3;45	6]				
	A =							
		1 4	2 5	з 6	>> (>> (C(1,1)= C	=10;	
	>> B	=[78	9]		С =			
	В =	_	_	_			2 5 8	3 6 9
	>> C	7 =[A;B]	8	9	>> (>> ()(:,1)=)	=[];	
	C =				С =			
		1 4 7	2 5 8	3 6 9		2 5 8	3 6 9	

Scalar Operations

(Command window acts as a calculator)

- Arithmetic operations: 2+3, 2-3, 2*3, 2/3
- Multiplication is not implicitly given
 : (2+3)*2 works but (2+3)2 gives an error
- Exponential: 2^3
- Built-in functions:

```
sqrt(2)
log(2)
cos(pi/2), sin(pi/2), tan(pi/2)
exp(2)
round(1.5), ceil(1.5), floor(1.5)
abs(-1)
```

Vector/Matrix Operations

Standard matrix addition/subtraction/multiplication work.
 The dimension must be matched!

명령 창	명령 창
>> A=[1 0;0 1];	>> A=[1 0; 0 1];
>> B=[1 2; 3 4];	>> B=[1 2; 3 4];
>> A+B	>> A*B
ans =	ans =
2 2	1 2
3 5	3 4

 Dot enables element-wise operation.: A.+B A.-B A.*B A./B The dimension must be matched!

명령 창	명령 창
>> A=[1 O; O 1]; >> B=[1 2; 3 4]; >> A.*B	>> A=[1 0; 0 1]; >> B=[1 2; 3 4]; >> A./B
ans =	ans =
	1.0000 0 0 0.2500

Vector/Matrix Operations

• Built-in functions work on matrices: exp(A), log(A), sqrt(A), etc.

명령 창	명령 창	명령 창
>> clear >> B=[1 2; 3 4]; >> exp(B) ans =	>> B=[1 2; 3 4]; >> log(B) ans =	>> B=[1 2; 3 4]; >> sqrt(B) ans =
2.7183 7.3891 20.0855 54.5982	0 0.6931 1.0986 1.3863	1.0000 1.4142 1.7321 2.0000

Vector/Matrix Functions

- Transpose: transpose(A), A'
- Sum of each column, of each row, & of all elements
 : sum(A), sum(A,2), & sum(A(:))
- Product of each column, of each row, & of all elements
 : prod(A), prod(A,2), & prod(A(:))
- Minimum of each column, of each row, & of all elements
 : min(A), min(A,[],2), & min(A(:))
- Maximum of all column, of each row, & of all elements
 : max(A), max(A,[],2), & max(A(:))
- Dimension of matrix
 - Number of rows: n=size(A,1)
 - Number of columns: k=size(A,2)
 - Together: [n, k]=size(A)

Automatic Initializations

- A matrix of ones
 - : **ones(n,k)** where n is the # of rows, and k is the # of columns
- A matrix of zeros
 : zeros(n,k)
- Arithmetic sequence
 - Specifying the size of sequence: linspace(first, last, n)
 - Specifying the increment: first:n:last

명령 창	명령 창
>> a=linspace(1,10,5)	>> a=1:2:10
a =	a =
1.0000 3.2500 5.5000 7.7500 10.0000	1 3 5 7 9

Contents

- 1. Introduction
- 2. Generating/ Manipulating Variables
- 3. Statistics
- 4. Flow Control
- 5. Plot

Basic Statistic Functions

Generating random variables

: **random('distribution', parameter1, parameter2, ..., [n1, n2, ...])** eg. random('normal', 0, 1, n, k): n by k random matrix of N(0,1) eg. random('poisson', 5, n, k, r): n by k by r 3-d matrix of Poisson(5)

- short-cut for uniform(0,1): rand(n1,n2, ...)
- short-cut for N(0,1): randn(n1, n2, ...)
- Inverse distribution function
 - : **icdf('distribution', probability, parameter1, parameter2, ...)** eg. Icdf('normal', 0.975, 0, 1): 0.975 quantile of N(0,1)
- Mean: mean(A), mean(A,2), and mean(A(:))
- **Variance**: var(A), var(A,2), var(A(:))
- **Standard deviation**: std(A), std(A,2), std(A(:))

Contents

- 1. Introduction
- 2. Generating/ Manipulating Variables
- 3. Statistics
- 4. Flow Control
- 5. Plot

Relational Operators

Standard relational operators

- equal
- not equal
- greater than
- less than
- greater than or equal to
- less than or equal to

Logical operators

- and
- or

B	령 창
	>> a=[1 2 3]; >> b=[1 2 4]; >> (a==b)
	ans =
	1×3 <u>logical</u> 배열
	1 1 0

_ _

 $\sim =$

>

<

> =

 $\leq =$

&

If/ else/ elseif

- 'if' executes a group of statements when the condition is true.
- 'else' or 'elseif' blocks are <u>optional</u>. The statements execute <u>only if the</u> <u>condition in the 'if' are false</u>.
- An 'if' block can include multiple 'elseif' block.

```
% if/elseif/else example
```

```
heights=[130 155 180];
if heights(1)==max(heights)|
    disp('The first person is the tallest');
elseif heights(2)==max(heights)
    disp('The second person is the tallest');
else disp('The last person is the tallest');
```

명령 창

The last person is the tallest

For loop

- 'for' executes statements specified number of times.
 - n=n+1; is implicitly embedded in the end of the commands.
 - Loop variable is scalar within the command block.
 - Loop variable can be defined by a vector.

```
eg. a=0:2:10
```

```
eg. a=[0 2 4 6 8 10]
```

- To specify certain element of a vector in the command block, the vector MUST be declared ahead of the loop.

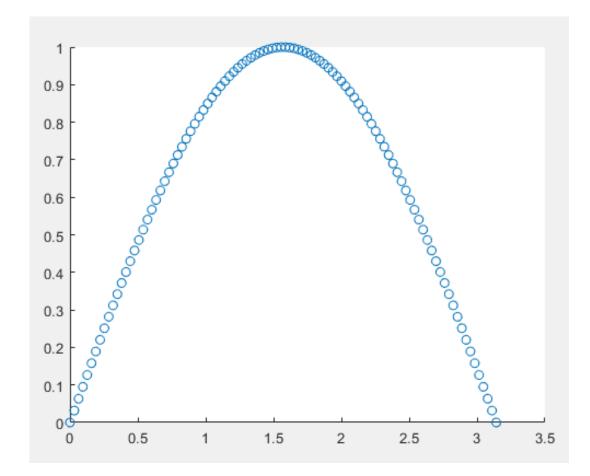
```
generating Fibonacci sequence
  26 -
 seq=zeros(1,10);
 seq(2)=1;
∃for a=3:10
       seq(a)<mark>=</mark>seq(a-1)+seq(a-2)
 end
          명령 창
 seq
            seq =
                 0
                           1
                                  2
                                       з.
                       1
                                             5
                                                  8
                                                       13
                                                            21
                                                                  34
```

While loop

- 'while' repeats the execution of a group of statements while the condition is true.
 - no need to specify the number of iteration unlike the for loop.
 - caution: infinite loop!

```
% computing a factorial
n=5;
fac=1;
while n>1
  fac=fac+n;
    n=n-1;
    % unlike the 'for-loop', the increment
    % or decrement must be specified.
    % Otherwise, infinite loop occurs.
end
```


Contents

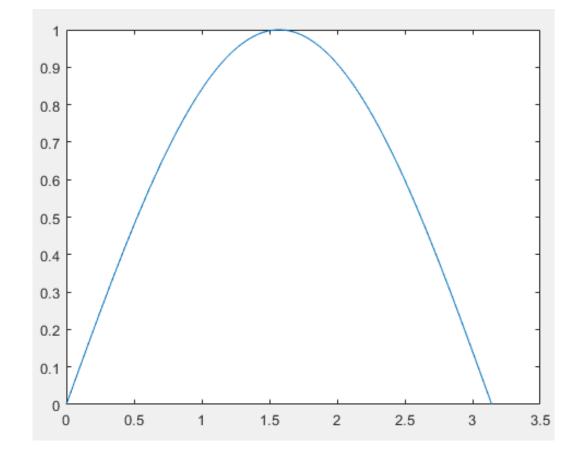

- 1. Introduction
- 2. Generating/ Manipulating Variables
- 3. Statistics
- 4. Flow Control
- 5. Plot

Scatter Plot

• Scatter plot

: **scatter(x,y)** where x and y are vectors with the same dimension

```
x=linspace(0, pi, 100);
y=sin(x);
scatter(x,y);
```



2D Line Plot

• Line plot

: **plot(x,y)** where x and y are vectors with the same dimension

```
x=linspace(O, pi, 100);
y=sin(x);
plot(x,y);
```


• There are various options for the plot function. See the help documents.